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Abstract

We propose using deep learning as the “workhorse” of a cog-
nitive architecture. We show how deep learning can be lever-
aged to learn representations, such as a hierarchy of ana-
logical schemas, from relational data. Our view drives some
desiderata of deep learning, particularly modality indepen-
dence and the ability to make top-down predictions. Finally,
we consider the problem of how relational representations
might be learned from sensor data that is not explicitly re-
lational.

Deep Learning as a Workhorse for Learning
and Inference

We consider the hypothesis, suggested by neuroanatomy
(Mountcastle 1978), that higher level cognition is built on
the same fundamental building blocks as low-level percep-
tion. Likewise, we propose that learning high-level represen-
tations uses many of the same mechanisms as learning per-
ceptual features from low-level sensors, which is essentially
what deep learning systems do.

In our work, we assume that such a system —a system
that not only learns a feature hierarchy from a collection
of fixed-width vectors, but alsousesthe feature hierarchy
to parse new vectors and make predictions about missing
values— can be used as theworkhorsefor learning and rea-
soning. We assume that such a system ismodality indepen-
dentand learns a feature hierarchy with relevantinvariances
for whatever modality it is trained on, given enough training
data. For example, given a large number of images, the sys-
tem should learn features such as visual objects with invari-
ance to rotation, translation, and scale. A copy of the same
initial (untrained) system, given ample speech data, should
learn phonemes and words with invariance to pitch, speed,
and speaker. Some evidence suggests that the perceptual cor-
tex is capable of such plasticity (Sur and Rubenstein 2005).
There are already deep learning systems that accomplish
part of this goal (Le et al. 2012), (LeCun 2012), but these
provide the architecture and connectivity, which implicitly
relies on knowledge of the topology of the sensor modalities
on which these systems are trained. Ideally, we would like
this network structure to be learned because, for higher-level
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representations, such as that described in the next section,
the topology is unknown beforehand andmustbe learned.

Though there is still work to be done by the deep learning
community before such a system is completely developed,
we consider how this system might be leveraged to learn
and use higher level representations.

Leveraging Deep Learning for Relational Data
and Logical Inference

A criticism of deep learning, and connectionism in general,
is that such systems are incapable of representing (much less
learning) relational schemas such as “sibling”. Furthermore,
deep learning has been criticized for being unable to make
simple parameterized logical inferences such as “If A loves
B and B loves C, then A is jealous of C.” (Marcus 1998).
We have taken steps to address these criticisms by show-
ing how a second (non-connectionist) system can transform
relational data into fixed-width vectors such that overlap
among these vectors corresponds to structural similarity in
the relational data. Unlike related approaches ((Socher etal.
2012), (Rachkovskij, Kussul, and Baidyk 2012), (Levy and
Gayler 2008)), our representation is able to exploit partial
analogical schemas. That is, a partial overlap in our repre-
sentation’s vectors corresponds to a common subgraph in the
corresponding structures. Furthermore, through processes of
windowingandaliasingour system is able to represent struc-
tures with hundreds of entities and relations using a few
thousand features, whereas the earlier work requires thou-
sands of features to represent structures with only a handful
of entities and relations. The details of our transformer and
the examples below are given in (Pickett and Aha 2013).

With this transformer, we can feed transformed structures
into a simple deep learning system to learn features that are
relevant for these structures. These learned features corre-
spond toanalogical schemas. For example, given 126 stories
in predicate form (Thagard et al. 1990), our system produces
a feature hierarchy of stories (corresponding to plot devices),
part of which is shown in Figure 1. In this figure we see a
“Double Suicide” analogical schema found in bothRomeo
and Julietand inJulius Caesar. In the former, Romeo thinks
that Juliet is dead, which causes him to kill himself. Juliet,
who is actually alive, finds that Romeo has died, which
causes her to kill herself. Likewise, inJuliet Caesar, Cassius
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kills himself after hearing of Titinius’ death. Titinius, who is
actually alive, sees Cassius’s corpse, and kills himself. The
largest schema found (in terms of number of outgoing edges)
was that shared byRomeo and JulietandWest Side Story,
which are both stories about lovers from rival groups. The
latter doesn’t inherit from the Double Suicide schema be-
cause the analog of Juliet/Titinius, Maria, doesn’t die in the
story, and, Tony (the analog of Romeo/Cassius) meets his
death by murder, not suicide. Some of the schemas found
were quite general. For example, the oval on the lower right
with 6 incoming edges and 3 outgoing edges corresponds to
the schema of “a single event has two significant effects”.
And the oval above the Double Suicide oval corresponds to
the schema of “killing to revenge of another killing”.

Figure 1: Part of the Feature Hierarchy our system
learned from a story dataset.Grey boxes on the left corre-
spond to instances (individual stories). The black ovals rep-
resent higher level concepts. The “raw” features are omit-
ted due to space limitations. Instead, we show the outgoing
edges from each black oval. The high level concepts corre-
spond to shared structural features, oranalogical schemas.
For example, the highlighted oval on the right represents a
Double Suicideschema, which happens in bothRomeo and
Julietand inJulius Caesar.

Once the relational structures are transformed, the process
of retrieving analogs is exactly the same algorithm as that
for recognizing visual objects given a visual feature hierar-
chy, namely parsing a fixed-width vector into its component

features. By this process, we are able to efficiently retrieve
analogs in logarithmic time (in the number of total stories)
compared to linear time for the MAC/FAC algorithm (For-
bus, Gentner, and Law 1995). Table 1 shows an empirical
comparison of analog retrieval on the story dataset of our
system and MAC/FAC, where our system yields an order-
of-magnitude speedup (in terms of vector comparisons) at a
small loss in accuracy. For further details, please see (Pickett
and Aha 2013).

Accuracy Avg. # Comparisons
MAC/FAC 100.00%± .00% 100.00± .00
Pickett & Aha 95.45%± .62% 15.43± .20

Table 1:Speed/Accuracy Comparison

Parsing and top-down prediction may be used together
with a non-connectionistchaining algorithm to perform
rudimentary logical inference. Briefly, the chaining algo-
rithm chainsbindingswhere a binding is a symmetrical re-
lation stating that two variables have the same value. IfA is
bound toB, andB is bound toC, then chaining infers thatA
is bound toC. A simplified example of inference using pars-
ing, top-down prediction, and chaining is shown in Figure 2.
In this example, our system has learned analogical schemas
from stories of theft, diplomatic visits, and defaulted loans.
In The Story of Doug, the system is told that Doug loaned a
spatula to Gary who then defaulted. Our system parses this
story, uses top-down prediction, and chaining to infer that
the spatula was lost. This example is simplified in that it
does not use windowing or alias, and the variables are atoms
rather than a sparse coding, but it shows the basic mecha-
nism of inference.

Whence come Relations, Causality, & Entities?
In the previous section, our system was presented with sto-
ries already encoded in predicate form. An open question
is how stories and other relational structures can be learned
from data that is not explicitly relational. For example, given
a large number of videos of people interacting, how might a
system learn entities such as people and relations such as
“loves”? A simpler example would be, given a large number
of static images of “billiard ball traces”, such as that shown
in Figure 3, how might a system develop entities such as
“billiard ball” and “mass” (of a billiard ball) and relations
such as “bounces off of”? We believe that this is possible
in principle because a naive model of “billiard physics” can
be used to compress such images. Note that our question
differs from the questions addressed by earlier work on rela-
tional learning ((Kemp and Tenenbaum 2008), (Schmidt and
Lipson 2009)) in that neither the entities nor the relationsare
provided to our system: In the billiard example, the primitive
features correspond to pixels, and features such as mass are
not directly observable.

Currently, we are attempting to address this question. Our
current approach lies in investigating how a model of bil-
liard physics (and other systems) can be represented in our
framework (note that natural numbers are not innate in our



Figure 2: Basic inference us-
ing bottom-up parsing, top-down
prediction, and chaining In this
simplified example, we use a hi-
erarchy of schemas (learned from
stories shown on the lower left) to
parse The Story of Doug, which is
parsed to inherit from the concept
at the top-right. This concept has
the atomic feature “loaned-lost”,
which, through top-down implica-
tion, we infer to be part of The
Story of Doug. We then use a non-
connectionist system to interpret
the features in the Story of Doug
as bindings, and chain “loaned-
lost” with “loaned-Spatula” to infer
“lost-Spatula” (i.e., the Spatula was
lost).

Figure 3:A “Billiard
Ball” Trace. How
might a naive model
of billiard physics
be learned from
many similar static
images?

framework), investigating how multi-step inference mightbe
performed, developing an energy function (likely a combi-
nation of compression and speed of inference (Schmidhuber
2002)), and investigating how representations may be effi-
ciently searched to minimize this energy function.
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